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A local linear stability analysis is performed for a round inviscid jet with constant
density that is injected into a uniform crossflow of the same density. The baseflow
is obtained from a modified version of the inviscid transverse jet near-field solution
of Coelho & Hunt (J. Fluid Mech. vol. 200, 1989, p. 95) which is valid for small
values of the crossflow-to-jet velocity ratio λ. A Fourier expansion in the azimuthal
direction is used to couple the disturbances with the three-dimensional crossflow.
The spatial growth rates of the modes corresponding to the axisymmetric and first
helical modes of the free jet as λ→ 0 increase as λ increases. The diagonal dominance
of the dispersion relation matrix is used as a quantitative criterion to estimate the
range of velocity ratios (0< λ < λc) within which the transverse jet instability can be
considered to have a structure similar to that of the free jet. Further, we show that
for λ> 0 positive and negative helical modes have different growth rates, suggesting
an inherent weak asymmetry in the transverse jet.

1. Introduction
The jet in crossflow (or transverse jet) is a flow field that appears in a variety of

technological applications such as in propulsion systems, where transverse air jets are
used for temperature pattern factor control and/or emission control, for fuel injection,
and for thrust vector control. A more detailed description of the variety of possible
applications of the transverse jet can be found in Margason (1993) and Karagozian,
Cortelezzi & Soldati (2003).

The jet injected normally from a wall into a crossflow involves two fundamental
flows: a perpendicular free jet and a boundary-layer driven by uniform flow far above
the injection wall. The transverse jet’s characteristics are far more complex than those
present in these basic canonical flows, however. As the jet exits the nozzle or pipe,
which can be either flush-mounted in the wall or protruding into the crossflow, it
is deflected by the crossflow until both flows become aligned in the same direction.
A schematic of this complicated interaction process for flush injection is shown in
figure 1, where a variety of coherent structures are formed: (i) the jet’s shear-layer
vortices; (ii) wake vortices downstream of the jet; (iii) a counter-rotating vortex pair
(CVP) generally associated with the jet’s cross-section, and (iv) horse-shoe vortices
forming about the jet orifice.

In the present work, we are interested in the first of these structures, which form for
both flush and elevated jet injection (Megerian et al. 2006) and are widely thought
to be generated by the well-known Kelvin–Helmholtz inviscid instability mechanism
(Kelso, Lim & Perry 1996; Fric & Roshko 1994). Yet some researchers argue that the
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Figure 1. Schematic of the jet in crossflow and associated vortical structures, after Fric &
Roshko (1994). Coordinate system for the present analysis is shown.

transverse jet shear layer instability is strongly influenced by the near-field formation
and longitudinal evolution of the CVP and hence is not precisely of the Kelvin–
Helmholtz type (Huq & Dhanak 1996; Blanchard, Brunet & Merlen 1999). To
explore this and other issues, linear stability analysis is carried out in the present
study using the inviscid vortex-sheet solution of Coelho & Hunt (1989) as a baseflow,
which contains discontinuities in the velocity profile. This solution has been extended
by Coelho (1988) and Needham, Riley & Smith (1988) to represent inclined jets in
crossflow. It is well known that the use of discontinuous velocity profiles to represent
open shear layer flows, such as in the planar mixing layer or the free jet, yields linear
disturbances with spatial (or temporal) growth rates that increase monotonically
with frequency (or wavenumber). Although such a result is not realistic, since a
maximum growth rate does exist for continuous velocity profiles, it does agree well
with experimental and numerical results obtained from continuous velocity profiles in
the limit of small frequencies (or wavenumbers) (see Chandrasekhar 1961; Drazin &
Reid 1981; Godrèche & Manneville 1998; Lin 2003 for details), and useful trends
and phenomena may be extracted. The present study involving a local linear stability
analysis (LSA) of an inviscid baseflow is one of several transverse jet studies currently
being pursued by our group; these include the LSA of a continuous base flow (Alves,
Kelly & Karagozian 2006), full numerical simulations (Alves 2006), and experimental
exploration (Megerian et al. 2006).

Shear layer instabilities in free jets are more complex than in their planar mixing
layer counterparts due to the existence of a second characteristic length scale in
addition to the jet momentum thickness, that is, the jet diameter. As a direct
consequence, disturbances with different azimuthal modes may be present in the
flow field at different streamwise locations. The work of Batchelor & Gill (1962) was
among the first to explore instability of a free jet. They use two different models for
the free jet: a top-hat profile and a continuous solution. Although Batchelor & Gill
perform a temporal linear stability analysis, Crow & Champagne (1971) extend the
analysis to include spatial instability. These latter authors are also among the first
to have studied and controlled the evolution of large-scale coherent structures in a
turbulent free jet, achieving maximum amplification of the disturbances present at
the nozzle exit through forcing of specific frequencies, consistent with the concept
of a convectively unstable flow (Huerre & Monkewitz 1990). Hence in the present
study we consider the flow field of the jet to be locally convectively unstable and the
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transverse jet disturbances to evolve spatially, because the same is true for the free jet
and because the crossflow-to-jet velocity ratio λ is assumed to be small.

To our knowledge, there is no work in the available literature that has used
linear stability techniques to investigate the effect of a crossflow on jet shear layer
instabilities. Blossey & Schmid (2002) report some preliminary results on a large-scale
global stability analysis that used time-averaged direct numerical simulation (DNS)
data as a baseflow. It is found that the growth rates of the shear layer modes increase
and that these modes appear closer to the jet exit as the jet Reynolds number is
increased, but the results were obtained for only a single value of λ (= 1/6). We
pursue a different approach here, using a simple and computationally inexpensive
baseflow model in order to obtain information concerning the instability of the
transverse jet for a wide range of λ.

The transverse jet inviscid baseflow model used in the present study is based on the
one developed by Coelho & Hunt (1989). An error exists in one of the second-order
kinematic conditions derived by Coelho (1988), and while this does not affect the
results in Coelho & Hunt (1989), it is important in the present analysis. In the present
paper, we correct this problem in § 2 and describe the new inviscid three-dimensional
solution for the steady transverse jet. Then, we show in § 3 how a Fourier expansion
is used to analyse the stability problem and to obtain a dispersion relation. Finally,
we present in § 4 the spatial growth rates of the inviscid transverse jet using this linear
stability approach. Asymmetry of the flow is also discussed there.

2. Baseflow
The inviscid incompressible three-dimensional vortex-sheet model of Coelho &

Hunt (1989) for the near field of a strong jet issuing from a pipe into a uniform
crossflow is the foundation for our analysis. Asymptotic solutions are represented in
integral powers of the small parameter λ ≡ U∞/Uj , the crossflow-to-jet velocity ratio.
The lowest-order solution is a circular jet with uniform velocity that is bounded by a
vortex sheet. The boundary-value problem is formulated in cylindrical coordinates (x,
r and θ) where θ is measured with respect to the downstream or lee side of the jet,
as shown in figure 1. The problem is shown by Coelho & Hunt to yield the following
results for the velocity potentials φj and φe for the internal and external regions of
the jet, respectively:

φj = φ
(0)
j + λφ

(1)
j + λ2φ

(2)
j + O(λ3) = x + λ2F2(x, r) cos[2θ] + O(λ3), r � Rj, (2.1a)

φe = φ(0)
e + λφ(1)

e + λ2φ(2)
e + O(λ3) = λ

(
r +

1

r

)
cos[θ] + O(λ3), r > Rj , (2.1b)

where the function F2(x, r) is given by

F2(x, r) = (C2 − x)r2 +

∞∑
n=1

AnJ2[σnr] exp[−σnx], x � 0, (2.1c)

F2(x, r) =

∞∑
n=1

BnJ2[τnr] exp[+τnx], x � 0, (2.1d)

with σn and τn being the zeros of the Bessel function J2 and its derivative, respectively.
The near-field evolution of the cross-sectional shape Rj of the transverse jet is
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Figure 2. Inviscid streamwise velocity component behaviour in the radial and streamwise
directions for different values of λ at θ = 0.

represented by

Rj = 1 − λ2

{
x(x − 2C2) −

∞∑
n=1

AnJ3[σn](exp[−σnx] − 1)

}
cos[2θ]. (2.1e)

In the above, the variables are made dimensionless by use of the nozzle exit radius
R0 and velocity Uj . The numerical values of the coefficients C2, An and Bn are
determined by enforcing continuity of the velocity potential φj and its derivatives
across the nozzle exit at x = 0, and taking advantage of the orthogonality of the
Bessel functions. The linear system of equations that determines Bn is

∞∑
m=1

BmτmJ2(τm)

σm − τm

= − 1

σn

, (2.2a)

which enables us to evaluate An and C2 from

An =
2

σnJ3(σn)

∞∑
m=1

Bmτ 2
mJ2(τm)

σ 2
m − τ 2

m

and C2 =

∞∑
m=1

BmJ2(τm). (2.2b, c)

The summation terms associated with the exponential decay in x due to the exit
effects present in relations (2.1c) and (2.1e) become negligible for x > 1/3. This is
demonstrated in figure 2, which shows the streamwise velocity component variation
with x, r and λ at θ = 0, the lee side of the jet. The variation with x of ∂φj/∂x is due
entirely to these exponential terms. Because of this, we can simplify F2 and Rj when
x > 1/3 as

F2(x, r) = (C2 − x)r2, (2.3a)

Rj = 1 − λ2

{
x(x − 2C2) +

∞∑
n=1

AnJ3[σn]

}
cos[2θ]. (2.3b)

At this point we note that a detailed analysis of the derivation by Coelho (1988)
shows that the O(λ2) kinematic condition for the external flow needs to be corrected
because it neglects the deformation of the interface. If one ignores the exponentially
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decaying terms in x, equation (2.1b) for φe may be replaced by the corrected relation:

φe = λ

(
r +

1

r

)
cos[θ] − λ2

(
C2 − x

r2

)
cos[2θ] + O(λ3), r > Rj . (2.4)

All the other solutions presented above remain the same as in Coelho & Hunt (1989).
The impact this correction has on the results presented by Coelho & Hunt (1989) is

minimal. Most of the models these researchers develop are compared with each other
and with their own experimental data, using the transverse jet cross-sectional shape Rj ,
such as the one given in (2.1e). This function is only affected by equation (2.4) at the
O(λ3) problem, but their analysis is performed only up to order λ2. Nevertheless, this
correction is important for the present work and will be retained throughout this study.

The inviscid velocity profiles at each order in λ are then obtained from

Ui(x, r, θ) =
∂φ(i)

∂x
, Vi(x, r, θ) =

∂φ(i)

∂r
, Wi(x, r, θ) =

1

r

∂φ(i)

∂θ
, i = 0, 1, 2, . . . . (2.5)

Because the flow is assumed to be inviscid, a vortex sheet exists and a discontinuity
is present in the above solution at r = 1. The flow for r > 1 is the same as that past a
circular cylinder to O(λ), but the flow is fully three-dimensional everywhere at O(λ2).

3. Linear stability analysis
This section describes the general steps needed in order to derive the linear

disturbance equations. Then, the details on the approach used to solve the linear
stability problem are provided before presenting results. All the equations and results
from the stability analysis in this paper are obtained using the symbolic and numerical
computation capabilities of the software Mathematica created by Wolfram (1999).

3.1. Governing equations and interface conditions

The governing equations within the transverse jet, written in terms of the overall
velocity potential (denoted by an asterisk), are the continuity equation

∇ · u = ∇2φ∗
j =

∂2φ∗
j

∂x2
+

1

r

∂

∂r

(
r
∂φ∗

j

∂r

)
+

1

r2

∂2φ∗
j

∂θ2
= 0, (3.1a)

which is valid everywhere except at the vortex sheet, and the Bernoulli equation

∂φ∗
j

∂t
+

1

2
∇φ∗

j · ∇φ∗
j +

P ∗
j

ρ
= const, (3.1b)

where ρ is the density of the jet and of the crossflow.
Outside the transverse jet, the continuity equation becomes

∇ · u = ∇2φ∗
e =

∂2φ∗
e

∂x2
+

1

r

∂

∂r

(
r
∂φ∗

e

∂r

)
+

1

r2

∂2φ∗
e

∂θ2
= 0, (3.2a)

whereas the Bernoulli equation becomes

∂φ∗
e

∂t
+

1

2
∇φ∗

e · ∇φ∗
e +

P ∗
e

ρ
= const. (3.2b)

On the interface S = r − r∗(x, θ, t) = 0, the kinematic conditions are

∂S
∂t

+ ∇φ∗
j · ∇S = 0 and

∂S
∂t

+ ∇φ∗
e · ∇S = 0, (3.3a, b)
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and the dynamic condition P ∗
j = P ∗

e allows us to write

∂φ∗
j

∂t
+

1

2
∇φ∗

j · ∇φ∗
j =

∂φ∗
e

∂t
+

1

2
∇φ∗

e · ∇φ∗
e . (3.3c)

3.2. Linearization and normal mode analysis

Coelho & Hunt’s modified solution (mean quantities φj , φe and Rj ) is now
perturbed by introducing infinitesimal disturbances not only for the velocity potential

(disturbance quantities φ̃j and φ̃e) but for the interface displacement as well

(disturbance quantity R̃j ). Because the free jet is sensitive to local disturbances that
render the flow convectively unstable (see Huerre & Monkewitz 1990), we expect the
same to be true for the transverse jet, at least for small values of λ, which is consistent
with recent experimental observations by Megerian et al. (2006). We therefore assume
that these disturbances evolve spatially and can be separated into Fourier modes as
follows:

φ∗
j = φj + φ̃j = φj + Φj (r, θ) exp[i(αx − ωt)], (3.4a)

φ∗
e = φe + φ̃e = φe + Φe(r, θ) exp[i(αx − ωt)], (3.4b)

R∗
j = Rj + R̃j = Rj + N(θ) exp[i(αx − ωt)], (3.4c)

with i ≡
√

−1, and φj , φe and Rj given by relations (2.1a), (2.4) and (2.3b). Since we
assume that disturbances grow spatially, the wavenumber α is taken to be a complex
number and the frequency ω is an arbitrary real number. A local stability analysis is
performed in this study, which is the reason why the x dependence of Φj , Φe and N
is ignored in (3.4). From this point on, x = x0 becomes a parameter for these terms
in our analysis at O(λ2).

Substituting relations (3.4) into equations (3.1a) and (3.2a) we obtain

1

r

∂

∂r

(
r
∂Φj

∂r

)
+

1

r2

∂2Φj

∂θ2
− α2Φj = 0, (3.5a)

which is valid inside the transverse jet, and

1

r

∂

∂r

(
r
∂Φe

∂r

)
+

1

r2

∂2Φe

∂θ2
− α2Φe = 0, (3.5b)

which is valid outside the transverse jet.
Based on (3.4c), we can approximate on a linear basis the value of an arbitrary

function f at the disturbed interface by the relation

f (x, R∗
j , θ, t) � f (x, Rj , θ, t) + R̃j

∂f

∂r

∣∣∣∣
r=Rj

+ · · · . (3.6)

Making use of (3.4), we write the kinematic conditions (3.3a, b), respectively, as{
−i

(
ω − α

∂φj

∂x

)
N +

1

r

∂φj

∂θ

1

r

dN
dθ

=
∂Φj

∂r
− iαΦj

∂Rj

∂x
− 1

r

∂Φj

∂θ

1

r

∂Rj

∂θ

}
r=Rj

, (3.7a)

{
−i

(
ω − α

∂φe

∂x

)
N +

1

r

∂φe

∂θ

1

r

dN
dθ

=
∂Φe

∂r
− iαΦe

∂Rj

∂x
− 1

r

∂Φe

∂θ

1

r

∂Rj

∂θ

}
r=Rj

. (3.7b)
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Figure 3. Second-order correction to interface position Rj,2(x0) as a function of downstream
location x0, with Rj,2(0) � −0.036368.

Similarly, we can write the dynamic condition (3.3c) as{
−i

(
ω − α

∂φj

∂x

)
Φj +

∂φj

∂r

∂Φj

∂r
+

1

r

∂φj

∂θ

1

r

∂Φj

∂θ

= −i

(
ω − α

∂φe

∂x

)
Φe +

∂φe

∂r

∂Φe

∂r
+

1

r

∂φe

∂θ

1

r

∂Φe

∂θ

}
r=Rj

. (3.7c)

A further approximation is also introduced. The kinematic and dynamic conditions
(3.7) must be evaluated at the transverse jet interface Rj , which depends on λ as
shown in equation (2.3b). Hence, we use a Taylor series expansion to approximate the
value of any baseflow quantity at the deformed interface as

f (Rj, θ; x0) � f (1, θ; x0) + λ2Rj,2(x0) cos[2θ]
∂f

∂r

∣∣∣∣
r=1

+ · · · , (3.8)

where Rj,2(x0) represents the term within braces in equation (2.3b). The behaviour of
Rj,2(x0) is shown in figure 3 for reference and compared to x2

0 . This suggests that we
need (x0λ)

2 	 1 for the expansion to be valid, along with λ	 1.

3.3. Multiple mode approach

In order to take into account the coupling, due to the baseflow, between different
azimuthal modes in our analysis, we will solve the governing equations (3.5) and (3.7)
considering multiple modes simultaneously through the use of Fourier expansions. A
perturbation expansion in terms of λ is presented in Alves (2006) but the Fourier
expansion is thought to have a wider range of applicability. Approximation (3.8) is
first applied to the kinematic and dynamic conditions (3.7). Here, we take advantage
of the fact that our baseflow is accurate up to O(λ2) and neglect higher-order terms
in λ present in the approximate interface conditions. Neglecting R′

j (x) as well, on the
basis that it represents a non-local effect, and substituting the baseflow (2.1a) and
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(2.4), the approximate kinematic and dynamic conditions become

(1 + 2λ2 cos[2θ]Rj,2(x0))
∂Φj

∂r

∣∣∣∣
r=1

+ λ2 cos[2θ]Rj,2(x0)
∂2Φj

∂r2

∣∣∣∣
r=1

= −i(ω − α)N(θ) − λ2

(
i cos[2θ](α + 2(ω − α)Rj,2(x0))N(θ)

+ 2 sin[2θ]

(
(C2 − x0)

dN
dθ

+ Rj,2(x0)
∂Φ

∂θ

∣∣∣∣
r=1

))
, (3.9a)

(1 + 2λ2 cos[2θ]Rj,2(x0))
∂Φe

∂r

∣∣∣∣
r=1

+ λ2 cos[2θ]Rj,2(x0)
∂2Φe

∂r2

∣∣∣∣
r=1

= −iωN(θ) − 2λ sin[θ]
dN
dθ

+ λ2

(
i cos[2θ](α − 2ωRj,2(x0))N(θ)

+ 2 sin[2θ]

(
(C2 − x0)

dN
dθ

− Rj,2(x0)
∂Φ

∂θ

∣∣∣∣
r=1

))
, (3.9b)

−i((ω − α) + λ2(α + 2(ω − α)Rj,2(x0)) cos[2θ])Φj (1, θ)

− 2λ2(C2 −x0) sin[2θ]
∂Φj

∂θ

∣∣∣∣
r=1

+λ2(2(C2 −x0)− i(ω−α)Rj,2(x0)) cos[2θ]
∂Φj

∂r

∣∣∣∣
r=1

= −i(ω + λ2(2ωRj,2(x0) − α) cos[2θ])Φe(1, θ) − 2λ(sin[θ]

− λ(C2 −x0) sin[2θ])
∂Φe

∂θ

∣∣∣∣
r=1

+λ2(2(C2 −x0)− iωRj,2(x0)) cos[2θ]
∂Φe

∂r

∣∣∣∣
r=1

. (3.9c)

Now we use the Fourier transformation pairs

Φj (r, θ) =

∞∑
m=−∞

Φj,m(r) exp[imθ] and Φj,m(r) =
1

2π

∫ 2π

0

Φj (r, θ) exp[−imθ] dθ,

(3.10a)

Φe(r, θ) =

∞∑
m=−∞

Φe,m(r) exp[imθ] and Φe,m(r) =
1

2π

∫ 2π

0

Φe(r, θ) exp[−imθ] dθ,

(3.10b)

N(θ) =

∞∑
m=−∞

Nm exp[imθ] and Nm =
1

2π

∫ 2π

0

N(θ) exp[−imθ] dθ. (3.10c)

Multiplying the interface conditions (3.9a–c) by exp[−imθ]/2π, integrating the
result from 0 to 2π and substituting the inversion formulae in (3.10) where necessary,
we obtain the Fourier-transformed interface conditions

2π(Φ
′
j,m(1) + i(ω − α)Nm) + λ2

∞∑
n=−∞

[(
2(C2 − x0)M(3)

m,n

+ i(α + 2(ω − α)Rj,2(x0))M(1)
m,n

)
Nn + 2Rj,2(x0)M(3)

m,nΦj,n(1)

+ Rj,2(x0)M(1)
m,n(2Φ

′
j,n(1) + Φ

′′
j,n(1))

]
= 0, (3.11a)

2π(Φ
′
j,m(1) + iωNm) + λ

∞∑
n=−∞

[(
2M(2)

m,n

+ λ
(
iM(1)

m,n(2ωRj,2(x0) − α) − 2(C2 − x0)M(3)
m,n

))
Nn

+ λRj,2(x0)
(
2M(3)

m,nΦe,n(1) + M(1)
m,n(2Φ

′
e,n(1) + Φ

′′
e,n(1))

)]
= 0, (3.11b)
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2πi(ω − α)Φj,m(1) + λ2

∞∑
n=−∞

[(
2(C2 − x0)M(3)

m,n

+ iM(1)
m,n(α + 2Rj,2(x0)(ω − α))

)
Φj,n(1) − M(1)

m,n

(
2(C2 − x0)

− iRj,2(x0)(ω − α)
)
Φ

′
j,n(1)

]
= 2πiωΦe,m(1) + λ

∞∑
n=−∞

[(
2M(2)

m,n

− λ
(
i(α − 2ωRj,2(x0))M(1)

m,n + 2(C2 − x0)M(3)
m,n

))
Φe,n(1)

+ λ(iωRj,2(x0) − 2(C2 − x0))M(1)
m,nΦ

′
e,n(1)

]
, (3.11c)

where the integral matrix coefficients M(1)
m,n, M(2)

m,n and M(3)
m,n are defined as

M(1)
m,n =

∫ 2π

0

cos[2θ] exp[i(n − m)θ]dθ →

⎛⎜⎜⎜⎜⎜⎝
0 0 π 0 0

0 0 0 π 0

π 0 0 0 π

0 π 0 0 0

0 0 π 0 0

⎞⎟⎟⎟⎟⎟⎠ , (3.12a)

M(2)
m,n = in

∫ 2π

0

sin[θ] exp[i(n − m)θ]dθ →

⎛⎜⎜⎜⎜⎜⎝
0 π 0 0 0

−2π 0 0 0 0

0 −π 0 π 0

0 0 0 0 −2π

0 0 0 π 0

⎞⎟⎟⎟⎟⎟⎠ , (3.12b)

M(3)
m,n = in

∫ 2π

0

sin[2θ] exp[i(n − m)θ]dθ →

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 −π 0

−2π 0 0 0 −2π

0 −π 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , (3.12c)

and evaluated from m, n = −2 to 2 in order to show the structure of these matrix
coefficients and demonstrate the coupling they introduce.

Before proceeding any further, we Fourier transform the disturbance continuity
equations (3.5a, b) using definitions (3.10a) to obtain

1

r

d

dr

(
r
dΦj,m

dr

)
−

(
α2 +

m2

r2

)
Φj,m = 0, (3.13a)

1

r

d

dr

(
r
dΦe,m

dr

)
−

(
α2 +

m2

r2

)
Φe,m = 0, (3.13b)

which have the following boundary conditions:

Φj,m(r → 0) = finite and Φe,m(r → ∞) = 0. (3.13c)

The solution to these equations are given in terms of the modified Bessel functions

Φj,m = G1,mIm(αr) and Φe,m = G2,mKm(αr), (3.14a, b)

where G1,m and G2,m are, together with Nm, constants to be determined.
Substituting solutions (3.14) into the kinematic and dynamic interface conditions

(3.11) and truncating the resulting system of equations so as to analyse a finite number
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Nm of azimuthal modes, we obtain the matrix whose determinant is the transverse
jet’s dispersion relation

D(Nm) = D(Nm)(α; ω, x0, λ) = 0. (3.15)

It is noted that no assumptions have been made so far about the transverse jet
symmetry in this analysis of multiple modes.

4. Results and discussion
Now we present and discuss the results obtained from the linear stability analysis

of the inviscid transverse jet presented in § 3.3. The multiple mode analysis allows
us to investigate the effect of the coupling between different azimuthal modes and
the inherent asymmetry of the transverse jet, as discussed separately in the following
subsections.

4.1. Mode coupling

According to a separate perturbation analysis (Alves 2006), the solvability conditions
for ±m azimuthal modes are equivalent. This implies that the transverse jet could
have a plane of symmetry similar to the one found for the free jet. For now we impose
this symmetry condition in the current multiple mode analysis by setting

G1,m = G1,−m, G2,m = G2,−m. Nm = N−m. (4.1)

The original free jet dispersion relation is recovered from the transverse jet
dispersion relation as λ → 0. In this limit, the dispersion matrix is diagonal and the
azimuthal modes are decoupled. The crossflow introduces a mode coupling into the
hydrodynamic stability of the flow, however, that becomes stronger as the crossflow-
to-jet velocity ratio λ increases. A direct consequence of this is that, as λ increases,
more and more modes will need to be introduced in the analysis in order to converge
the results associated with the first azimuthal modes in the Fourier expansion. This
can be observed in table 1, which shows the behaviour of the wavenumber and growth
rate of the axisymmetric, first and second helical modes as the total number of modes
used in the analysis increases. By the term ‘axisymmetric’ here we mean that the
growth rate approaches the value for the axisymmetric mode of the free jet as λ → 0;
similar interpretations hold also for the other modes. The non-dimensional frequency
can be identified as a Strouhal number, St . When St = 1.90986 and λ=0.1, a 3 digit
convergence (maximum absolute error � 0.018) of the axisymmetric mode’s complex
wavenumber is obtained using a total of 13 modes (Nm = 12) in the calculations.
However, such convergence is only achieved for the first and second helical modes
with a total of 29 modes (Nm = 28).

The fact that the coupling between different azimuthal modes becomes significant
for a value of λ even as small as 0.1 leads us to an open question in the literature
regarding the similarities between free and transverse jets: What is the range of
velocity ratios (0 < λ < λc) within which the transverse jet still behaves as a free jet?
As mentioned previously, the free jet dispersion relation is diagonal, but the transverse
jet dispersion relation is not. From the perspective of the jet’s shear layer instability,
therefore, the present analysis can be used to establish a simple quantitative criterion
to help determine λc. In the present study, λc represents the maximum value of λ for
which the transverse jet dispersion relation matrix is still diagonally dominant, i.e. as
long as λ < λc, the non-diagonal terms that introduce the coupling are small enough
so that the free and transverse jets can be assumed similar. While strict diagonal
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Nm αm=0 αm=1 αm=2

1 5.74855 − 5.74065i 5.82837 − 5.82643i N/A
2 5.76676 − 5.87397i 5.88340 − 5.86821i 5.68823 − 5.54465i
3 5.88618 − 5.89345i 5.77948 − 5.94233i 5.74246 − 5.76588i
4 5.79168 − 5.88193i 5.88631 − 5.89796i 5.77521 − 6.03926i
5 5.87472 − 5.90345i 5.83704 − 5.95025i 5.80432 − 5.78218i
6 5.82028 − 5.88269i 5.85724 − 6.04146i 5.86995 − 5.92084i
7 5.86448 − 5.89681i 5.87377 − 5.96117i 5.84244 − 5.80586i
8 5.83562 − 5.88847i 5.88977 − 6.05563i 5.89876 − 5.89945i
9 5.85971 − 5.88673i 5.89547 − 5.97387i 5.87044 − 5.82993i

10 5.84306 − 5.89060i 5.90722 − 6.06247i 5.90966 − 5.90740i
11 5.85245 − 5.88247i 5.91156 − 5.98514i 5.89564 − 5.84846i
12 5.84693 − 5.89033i 5.92221 − 6.06859i 5.89327 − 5.76413i
13 5.84862 − 5.88380i 5.92413 − 5.99589i 5.91324 − 5.86057i
14 5.84879 − 5.88922i 5.93427 − 6.07535i 5.90654 − 5.78469i
15 5.84747 − 5.88537i 5.93433 − 6.00604i 5.92536 − 5.87135i
16 5.84944 − 5.88806i 5.94413 − 6.08205i 5.91768 − 5.80244i
17 5.84736 − 5.88644i 5.94293 − 6.01573i 5.93459 − 5.88173i
18 5.84940 − 5.88721i 5.95260 − 6.08854i 5.92733 − 5.81799i
19 5.84763 − 5.88706i 5.95034 − 6.02511i 5.94214 − 5.89189i
20 5.84908 − 5.88674i 5.96015 − 6.09487i 5.93577 − 5.83186i
21 5.84798 − 5.88733i 5.95681 − 6.03429i 5.94864 − 5.90195i
22 5.84872 − 5.88658i 5.96710 − 6.10107i 5.94317 − 5.84448i
23 5.84829 − 5.88737i 5.96249 − 6.04329i 5.95444 − 5.91199i
24 5.84844 − 5.88662i 5.96241 − 5.98104i 5.94966 − 5.85624i
25 5.84850 − 5.88727i 5.96757 − 6.05213i 5.94629 − 5.79448i
26 5.84830 − 5.88675i 5.96810 − 5.99115i 5.95543 − 5.86673i
27 5.84839 − 5.88715i 5.97539 − 6.06015i 5.96569 − 5.91264i
28 5.84842 − 5.88728i 5.96471 − 6.04474i 5.95844 − 5.91519i

Table 1. Complex wavenumber convergence in multiple mode analysis for St = 1.90986,
x0 = 1 and λ = 0.1.

dominance cannot be imposed because the dispersion relation matrix is singular, we
can establish this criterion mathematically by defining the following equation for λc:∣∣D(Nm)

i,i (λc)
∣∣ =

Nm∑
j=1(j �=i)

∣∣D(Nm)
i,j (λc)

∣∣ for any i �= m, (4.2)

with m being the azimuthal number of the chosen disturbance. In the equation
above, the left-hand side represents the diagonal terms whereas the right-hand side
represents the non-diagonal terms. As long as LHS > RHS, the matrix is diagonally
dominant. When the opposite is true, diagonal dominance is lost and the transverse
jet shear layer instability becomes fundamentally different from that for the round
free jet. Hence, equation (4.2) yields the value of λ at which the matrix transitions
from one case to the other, i.e. it yields a necessary condition for λc. The first mode
to lose its diagonal dominance is the axisymmetric mode, with λc � 0.0036. The
first and second helical modes lose their diagonal dominance when λc � 0.0063 and
λc � 0.0069, respectively. We note that criterion (4.2) is very conservative since it is
applied independently to each line i in the dispersion relation matrix. Further, the
values of λc are calculated using Nm = 6, 7 and 8 in order to verify the convergence
of results. While few experimental studies (or applications) exist for transverse jets
with such a low crossflow-to-jet velocity ratio, these findings demonstrate that the
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λ αm=0 αm=1 αm=2

St = 0.63662

0 1.66274 − 1.75551i 1.86795 − 1.64688i 2.01936 − 1.75211i
0.01 1.66274 − 1.75551i 1.86895 − 1.64705i 2.02007 − 1.74896i
0.02 1.66274 − 1.75551i 1.87202 − 1.64753i 2.02277 − 1.73812i
0.05 1.66277 − 1.75555i 1.89645 − 1.65117i 2.00933 − 1.50091i
0.1 1.66396 − 1.75666i 1.97807 − 1.69701i 1.63185 − 1.04803i

St = 0.95493

0 2.75252 − 2.74371i 2.75974 − 2.69699i 2.89434 − 2.67008i
0.01 2.75250 − 2.74371i 2.76140 − 2.69818i 2.89659 − 2.66839i
0.02 2.75211 − 2.74377i 2.76669 − 2.70173i 2.90367 − 2.66364i
0.05 2.74587 − 2.75333i 2.80782 − 2.71778i 2.94984 − 2.64201i
0.1 2.75054 − 2.80541i 2.93215 − 2.76901i 2.98459 − 2.46888i

St = 1.27324

0 3.74750 − 3.73481i 3.76012 − 3.72534i 3.81228 − 3.68681i
0.01 3.74740 − 3.73498i 3.76284 − 3.72803i 3.81545 − 3.68612i
0.02 3.74724 − 3.73698i 3.77058 − 3.73442i 3.82473 − 3.68468i
0.05 3.75627 − 3.75894i 3.80963 − 3.76595i 3.87969 − 3.68507i
0.1 3.80253 − 3.84327i 3.91953 − 3.85444i 3.95335 − 3.59346i

St = 1.59155

0 4.74745 − 4.73903i 4.75714 − 4.73037i 4.78609 − 4.70826i
0.01 4.74728 − 4.73943i 4.76176 − 4.73457i 4.79003 − 4.70921i
0.02 4.74777 − 4.74278i 4.77362 − 4.74477i 4.80105 − 4.71215i
0.05 4.76322 − 4.76863i 4.82734 − 4.80383i 4.86391 − 4.73170i
0.1 4.83058 − 4.85952i 4.93730 − 4.96133i 4.94365 − 4.69311i

St = 1.90986

0 5.74855 − 5.74065i 5.75451 − 5.73472i 5.77416 − 5.71895i
0.01 5.74841 − 5.74156i 5.76093 − 5.74016i 5.77970 − 5.72174i
0.02 5.75027 − 5.74616i 5.77679 − 5.75379i 5.79415 − 5.72965i
0.05 5.77119 − 5.77741i 5.85598 − 5.83803i 5.86937 − 5.77042i
0.1 5.84842 − 5.88728i 5.96471 − 6.04474i 5.95844 − 5.91519i

Table 2. Complex wavenumber from multiple mode analysis. The maximum absolute error of
the first helical mode is approximately 1.8×10−2 at λ = 0.1, 1.0×10−4 at λ = 0.05, 1.5×10−14

at λ = 0.02 and 3.8 × 10−25 at λ = 0.01. The second helical mode has absolute errors of the
same order, which is several orders of magnitude higher than the axisymmetric mode errors.

transverse jet instabilities are fundamentally different from those in the free jet, even
for very weak crossflows.

The complex wavenumber behaviour with respect to the velocity ratio of the
first three azimuthal numbers is presented in table 2, where the free jet solution
(λ = 0) is shown for reference. In the perturbation analysis of Alves (2006), the O(λ2)
connection to the growth rate of the axisymmetric mode is found to be zero. An
important consequence of the mode coupling is the fact that it allows the crossflow
to influence the axisymmetric mode. This can be seen in table 2, which shows that
the axisymmetric mode growth rate −Im[αm=0] increases with λ for all five Strouhal
numbers presented. Table 2 also shows that this increase becomes more pronounced
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at higher frequencies. A similar behaviour is also observed for the first helical mode,
with the growth rate increase with frequency being the most pronounced among all
three modes shown. The second helical mode growth rate does increase with λ at
higher frequencies, but this behaviour is reversed as the frequency decreases, with the
switch occurring at St � 1.3.

The behaviour of the helical modes described by the multiple mode analysis
is qualitatively similar to that predicted by the perturbation expansion analysis
(Alves 2006). But the more interesting result obtained from this analysis is the
destabilization of the axisymmetric mode by the crossflow, which occurs due to the
coupling between different modes and the axisymmetric mode. Such destabilization
of the jet’s axisymmetric mode by the crossflow is consistent with observations
in recent transverse jet shear layer experiments, which indicate the strengthening of
convective instabilities. Such convective instabilities for the transverse jet are observed
in experiments to occur closer to the jet orifice than those associated with the free jet,
and as crossflow magnitude increases, the instability is strengthened in magnitude
(Megerian et al. 2006). It is also interesting to note that in the present study the
growth rates of both helical modes for the transverse jet are higher than that of the
axisymmetric mode for high enough values of St (and λ), contrary to trends observed
in the free jet (Crow & Champagne 1971).

4.2. Flow asymmetry

The present analysis may also be used to explore inherent asymmetries associated
with the transverse jet. Free jets issuing from circular pipes or nozzles are often
referred to as ‘axisymmetric jets’ due to the geometric symmetry of the experimental
apparatus or numerical model (see Corke, Shakib & Nagib 1991). In such cases,
when the noise level is low and random, the mean velocity profile can be considered
symmetric. However, if helical disturbances for some reason exceed axisymmetric ones
in amplitude at the jet inlet, the axial symmetry of the mean profile is lost (see Corke
& Kusek 1993). The mean profile might still possess a plane of symmetry in such cases,
but only if helical disturbance pairs ±m have the same amplitude. This understanding
is corroborated by the spatial linear stability analysis of Michalke (1971), which shows
that axisymmetric disturbances are more unstable than helical ones for free jets with
thin shear layers and that the growth rate of helical disturbances is independent of the
sign of the azimuthal mode number m. Hence the free jet is regarded axisymmetric
close to the nozzle exit from the perspective of an open shear flow. This symmetry
concept can be extended to transverse jets, at least for low enough crossflow-to-jet
velocity ratios λ where this flow is expected to be convectively unstable, just like its
free jet counterpart.

To explore the possibility of asymmetry in the multiple mode approach, the
symmetry constraint (4.1) is removed and the original dispersion relation (3.15) is used.
It turns out that this original dispersion relation is not independent of the sign of the
azimuthal number m. In order to demonstrate this result, it is sufficient to investigate
the three (or two, depending on interpretation) mode problem m = 0 and ±1.
Since so few modes are used, the kinematic and dynamic conditions (3.11) can be
easily combined in such a way as to eliminate Nm and G1,m so that the transverse jet
dispersion relation matrix reduces to

D(3) =

⎛⎜⎝D1,1 0 D1,3

D2,3 D2,2 D2,3

D1,3 0 D1,1

⎞⎟⎠ , (4.3)
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where the expressions for the Di,j matrix coefficients are given in the Appendix. It is
important to note that D1,3 → 0 and D2,3 → 0 as λ → 0, and that the diagonal terms
in matrix (4.3) are the original free jet dispersion relation terms.

The complex wavenumbers of interest are the eigenvalues of matrix (4.3), and are
obtained by setting its determinant to be zero, yielding(

D2
1,1 − D2

1,3

)
D2,2 = 0, (4.4a)

which can be split into two separate equations

D2
1,1 − D2

1,3 = 0 and D2,2 = 0. (4.4b,c)

These equations are decoupled from each other, with (4.4c) yielding the complex
wavenumber associated with the axisymmetric mode m =0. Hence, by only
considering modes m =0 and ±1 in this analysis, we find that the crossflow does
not affect the original free jet axisymmetric mode. The first equation can be split into
two different equations, D1,1 = +D1,3 and D1,1 = −D1,3, one for each mode m = ±1.
Hence, the growth rates of the m = ±1 modes will be different from each other for
non-zero values of λ, although both modes converge to the free jet first helical mode
as λ→ 0 since D1,3 → 0 in this limit.

In order to further validate this finding, and also to verify if this particular
asymmetry affects other helical modes, we repeat the above derivation, but now
include azimuthal modes m = ±2 and perform a five (or three, again depending on
interpretation) mode analysis. In this case, the transverse jet dispersion relation matrix
reduces to

D(5) =

⎛⎜⎜⎜⎜⎜⎝
D1,1 D1,2 D1,3 D1,4 D1,5

D2,1 D2,2 D2,3 D2,4 D2,5

D3,1 D3,2 D3,3 D3,2 D3,1

D2,5 D2,4 D2,3 D2,2 D2,1

D1,5 D1,4 D1,3 D1,2 D1,1

⎞⎟⎟⎟⎟⎟⎠ , (4.5)

where the expressions for the Di,j matrix coefficients are not given here due to their
complexity. Nevertheless, all off-diagonal terms in matrix (4.5) vanish as λ → 0, as
they did in matrix (4.3). However, contrary to matrix (4.3), the diagonal terms in
matrix (4.5) do contain corrections due to the crossflow, although they vanish as
λ → 0.

The complex wavenumbers of interest are the eigenvalues of matrix (4.5) and are
obtained by setting its determinant to zero. As done with (4.4a), the resulting equation
can be split into two different equations

(D1,1 − D1,5)(D2,2 − D2,4) − (D1,2 − D1,4)(D2,1 − D2,5) = 0, (4.6a)

2D1,3((D2,2 + D2,4)D3,1 − (D2,1 + D2,5)D3,2)

−2D2,3((D1,2 + D1,4)D3,1 − (D1,1 + D1,5)D3,2)

−D3,3((D1,1 + D1,5)(D2,2 + D2,4) − (D1,2 + D1,4)(D2,1 + D2,5)) = 0. (4.6b)

These two equations are once again decoupled from each other. The second equation
yields the complex wavenumbers associated with the axisymmetric mode and the
first and second helical modes. The first equation yields the complex wavenumbers
associated with the first and second helical modes with opposite sign. In contrast to the
previous three mode case, the axisymmetric mode is also affected by λ. Furthermore,
not only do we see once again that the dispersion relations for positive and negative
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first helical modes are different from one another, but we also find that the same is
true for the second helical mode.

The analysis of the dispersion relation becomes too complex to allow simple
analytical equations such as (4.6) when more modes are considered. Nevertheless, it
turns out that the symmetry structure (D(N)

i,j =D
(N)
N+1−i,N+1−j ) of the dispersion relation

matrix is maintained when more modes are included in the analysis (m = ±3, ±4, and
so on). As a direct consequence, the dispersion relation can be split into two different
equations for these cases, as in (4.6), and the dispersion relations for positive and
negative helical modes again are different. Although this does not guarantee that the
growth rates of positive and negative helical modes will be different for arbitrary values
of x0, St and λ, these observations are strong indications that this may well be the case.

Ultimately, symmetry of the transverse jet is still an open question in the literature.
The results above show that the transverse jet is inherently asymmetric in the sense
discussed at the beginning of this subsection, not even possessing a plane of symmetry
as often assumed in simulations (e.g. Cortelezzi & Karagozian 2001). On the other
hand, although the growth rates of the positive and negative helical modes are indeed
different, an evaluation of equations (4.6) reveals that this difference is small for
both first and second helical modes. Hence, the transverse jet may be only weakly
asymmetric. This discovery may explain some seemingly contradictory features of the
transverse jet. While the early experiments of Kamotani & Greber (1974) suggest that
the CVP is a symmetric structure, for example, Kuzo (1995) and Smith & Mungal
(1998) provide experimental evidence indicating that the CVP can be either symmetric
or asymmetric. The concept of symmetry described in the current analysis, via the
initiation and coupling of non-axisymmetric modes, may provide an explanation for
the origin of the CVP’s asymmetry.

5. Discussion and conclusions
In this paper the near field of the inviscid jet in crossflow is used as a baseflow

for a local, linear stability analysis. The approach employs a Fourier transformation
of the stability problem, which takes into account the coupling, due to the baseflow,
between different azimuthal modes. The study provides a mathematical foundation
for and evidence associated with transverse jet behaviour and shear layer instabilities
that have heretofore not been well understood.

This multiple mode analysis indicates that the axisymmetric instability mode of
the transverse jet upstream shear layer is destabilized by the crossflow, and that this
effect is caused by the linear coupling between this axisymmetric mode and the helical
modes. The destabilizing effect of the crossflow, even at very low crossflow-to-jet
velocity ratios λ, suggests a fundamental difference between convective shear layer
instabilities associated with the free jet and with the transverse jet. As noted above,
such convective instabilities for the transverse jet are observed in experiments to
occur closer to the jet orifice than those associated with the free jet, and as crossflow
magnitude increases, the instability is strengthened in magnitude, even for relatively
low values of λ, on the order of 0.1–0.15 (Megerian et al. 2006).

The off-diagonal terms introduced by the crossflow in the otherwise diagonal
dispersion matrix in the present analysis allow us to use this matrix’s diagonal
dominance as a quantitative criterion to estimate the critical velocity ratio below
which the free and transverse jet shear layers can still be considered mathematically
similar. This criterion suggests that this critical value of crossflow-to-jet velocity ratio
may be as small as λc � 0.0036, indicating that the transverse jet shear layer and
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vortex rollup and merger can be fundamentally different from those for the free jet
even for extremely small crossflow velocities.

The present analysis also demonstrates that positive and negative helical modes for
the transverse jet have slightly different growth rates, implying a lack of symmetry
for the transverse jet Kelvin–Helmholtz instability and hence the evolving vortex
rings. This might explain the lack of symmetry of the (mean) CVP observed under
some conditions in the literature (Kuzo 1995; Smith & Mungal 1998), since most
researchers consider the Kelvin–Helmholtz instability and associated evolution of
vortex rings to play an important role in CVP formation. To our knowledge this is
the first mathematical verification that even low-level crossflows can produce weak
asymmetries in the transverse jet.

While the present results provide an interesting theoretical perspective on the
differences between free jet and transverse jet shear layer instabilities, there are still
important issues that require exploration. As noted from the beginning, the linear
stability analysis of a flow field represented by a discontinuous (inviscid) baseflow as
done in the present study is valid for low Strouhal numbers and does not predict
the conditions for which maxima in the growth rates of various modes occur. The
stability analysis of the transverse jet as represented with a continuous baseflow,
which provides the potential for the exploration of maxima in the growth rates, as
well as changes in the conditions producing the maxima depending on the transverse
jet configuration, is described in Alves et al. (2006), while results from a full three-
dimensional time-dependent numerical simulation of the transverse jet near field are
available in Alves (2006).
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the UCLA Graduate Division, the National Science Foundation under Grants CTS-
0200999 and CTS-0457413 and NASA under Grant NCC-157.

Appendix. Dispersion relation matrix
In this Appendix, the elements of the multiple mode dispersion matrix (4.3) derived

in § 4.2 for the three mode case are written out. However, these matrix elements are
remarkably complex even when only three modes are considered. In order to simplify
the presentation of these results while still allowing the reader to evaluate the different
transverse jet dispersion relations, the terms of order λ3 and higher present in these
matrix elements are neglected. The matrix elements of the five mode case are not
presented because they are too long and complex even when neglecting terms of order
λ3 or higher.

The elements of dispersion matrix (4.3) are

D1,1 = 2πi
ω2 (I0(α) + I2(α)) K1(α) + (α − ω)2 (K0(α) + K2(α)) I1(α)

ω (I0(α) + I2(α))
, (A 1)

D1,3 = πλ2
(
2αω(I0(α) + I2(α))2

(
(C2 − x0)α

2K0(α) + (2(C2 − x0) − iα)ωK1(α)

+ (C2 − x0)α
2K2(α)

)
+ iαω(I0(α) + I2(α))2

(
α2(α − 2ω)K0(α) + 4ω2K1(α)

+ α2(α − 2ω)K2(α)
)
Rj,2(x0) − i(α − ω)2ωI1(α)(I0(α) + I2(α))(−4αK0(α)

+ (3α2 − 8)K1(α) + α(αK3(α) − 4K2(α))Rj,2(x0) + I1(α)(K0(α) + K2(α))

(−2(2(C2 − x0) − iα)α(α2 − 4αω + 3ω2)(I0(α) + I2(α)) − i(3α2 − 8)(α − ω)2

ωI1(α)Rj,2(x0) − iα2(α − ω)2ωI3(α)Rj,2(x0))/(2αω2(I0(α) + I2(α))2), (A 2)
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D2,2 = 2πi
ω2I1(α)K0(α) + (α − ω)2I0(α)K1(α)

ωI1(α)
, (A 3)

D2,3 = πλ
(α − ω)2(K0(α) + K2(α))I0(α) − 2ω2I1(α)K1(α)

ω2I1(α)
, (A 4)

where Im(α) and Km(α) are modified Bessel functions.
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